Next-Generation Nuclear Reactors of Japan

	Main Coolant	Main Fuel	Size	Characteristics	Issues to Solve	Related Development Plans and Research Reactors
Innovative Light Water Reactor	Light water (ordinary water)	Uranium-235	Large	Highly mature technology, and highly predictable, including regulatory processes Passive safety systems and measures against external events (semi-underground construction) further enhance safety Severe-accident countermeasures (core catchers, gas collection, etc.) reduce impact to outside of the power plant	Requires large initial investment Financial risks if construction becomes prolonged	 SRZ-1200 Mitsubishi Heavy Industries, Ltd. HI-ABWR Hitachi GE Vernova Nuclear Energy, Ltd. iBR Toshiba Energy Systems, Ltd.
Small Modular Reactor	Light water (ordinary water)	Uranium-235	Small	 Core is small, and cooling is by natural circulation Accidents can be kept to small scale Short construction time and small initial investment 	 Its small scale makes it difficult to achieve economic results Safety regulations, etc. need development 	BWRX-300 Hitachi GE Vernova Nuclear Energy, Ltd.
High- Temperature Gas-Cooled Reactor	Helium gas	Uranium-235	Small to Large	 Coolant is helium which is stable at high temperatures (no exploding hydrogen) Resistant to high temperatures so meltdowns do not occur 950°C heat can be utilized (can be used for hydrogen production, etc.) 	 Energy density and improvement of economic efficiency Technical challenges such as stable clad fuel reprocessing 	 High Temperature Engineering Test Reactor (HTTR) Japan Atomic Energy Agency
Fast Reactor	Sodium	Uranium-235 Plutonium-239		Natural cooling and containment by natural convection of metallic sodium Amount and hazard-level of radioactive waste are reduced Effective use of resources can be expected	Technical challenges such as keeping sodium stable and under control Issues with seismic isolation technology and fuel manufacturing technology	Experimental fast reactor "Joyo" Japan Atomic Energy Agency
Nuclear Fission Reactor	Light water (ordinary water) Helium gas Liquid metal	Deuterium Tritium		 No chain reaction occurs, and in the event of failure the reaction stops Amount of radioactive waste is very small 	 Difficulty of maintaining plasma, and development and design of main equipment (much time is needed to make it practical for use) Technical challenges of safely containing tritium and building social consensus Energy density and economic viability need improvement 	 ◆ ITER (International Thermonuclear Experimental Reactor) (France) ITER International Fusion Energy Association ◆ Nuclear Fusion Experimental Device "JT-60SA" National Institutes for Quantum Science and Technology