Nuclear Fusion and Nuclear Fission

	Reaction Overview (Visualization)	Generated Energy Amount *	Main Fuel	Status of Power Generation Technology Development (© Current Stage)
Nuclear Fusion	Heavy hydrogen (deuterium) Neutron Tritium Helium	17.6MeV	Deuterium Tritium	● Experimental reactor ↓ Prototype reactor (demonstration reactor) ↓ Commercial reactor
Nuclear Fission	Neutron Weutron Uranium-235 Fission Neutron Neutron Neutron	200MeV	Uranium-235 Plutonium-239	Experimental reactor Prototype reactor (demonstration reactor) Commercial reactor

^{*} Generated Energy Amount: In terms of mass comparison, nuclear fusion is nearly five times more advantageous.