Classification of Waste

ctive Waste	Domestic Waste		Household garbage: General garbage (combustible/non-combustible), large items		
		Garbage	Commercial garbage: Waste from offices, restaurants, etc.		
		Raw sewage			
dioa		Specially controlled domestic waste *1			
Non-ra	Industrial Waste	Of the waste generated in commercial activities, 20 types of waste stipulated by law $*^2$			
		Specially controlled industrial waste *3			
adioactive Waste	Low-level Radioactive Waste	Power plant waste	Waste having an extremely low radioactive level		
			Waste having a relatively low radioactive level		
			Waste having a relatively high radioactive level		
		Uranium waste			
		Transuranic (TR	U) radioactive waste		
ш	High-level Radioactive Waste				

*1: Explosive, toxic, infectious and any other waste that is likely to result in damage to human health or the living environment.

*2: Cinders, sludge, waste oil, scrap metal, glass & concrete waste, etc.

*3: Excluding domestic waste, explosive, toxic, infectious and any other waste that is likely to result in damage to human health or the living environment.

Quantity of Waste Generated in Japan

	Amount of Waste Generated (to	Notes		
Domestic Waste	Mainly kitchen waste generated in the home, but also large items, and waste such as paper generated from offices		Data from 2017	
Industrial Waste	Of the waste generated in commercial activities, includes waste plastics, acids and alkalis, etc.	alkalis, etc.		
Dadia activa Wasta	Radioactive waste generated in the	High Level 1.4	Estimates for 2000 to 2006	
Radioactive waste	power facilities.	Low Level 44	Data from 2017	

Methods for Treating Nuclear Power Waste

Types of Radioactive Waste

Waste Type		Waste Type	Example of Waste	Where Generated	Treatment Method	
Low-level Radioactive Waste	Power plant waste	Waste having an extremely low radioactive level	Concrete, metal, etc.		Trench disposal	
		Waste having a relatively low radioactive level	Solidified liquid waste, filters, used tools, materials and consumables	Nuclear power plant	Pit disposal	
		Waste having a relatively high radioactive level	Control rods, reactor structures, etc.		Medium depth disposal	
	Uranium waste		Consumables, sludge, used tools and materials	Uranium enrichment and fuel fabrication plant	Medium depth disposal, pit or trench disposal; in some cases, deep geological disposal	
	Transuranic (TRU) radioactive waste		Parts of fuel rods, liquid waste, filters	Reprocessing facilities, MOX fuel fabrication facilities	Geological, Medium depth disposal or pit disposal	
High-level Radioactive Waste			High-level Radioactive Waste Vitrified waste		Geological disposal	

Waste below clearance level	Most of the waste from demolition of nuclear power plant	All power plants indicated above	Reuse or dispose of as general garbage
-----------------------------	--	----------------------------------	--

Radioactive Waste Types and Disposal

The depths and barriers are selected based on the radioactivity level, and the disposal of radioactive waste is performed using divided trench and pit disposal, medium depth disposal, and geological disposal.

Overview of the Clearance System

Structure of Low-level Radioactive Waste Disposal Facility

Stages in the Management of Low-level Radioactive Waste After Underground Storage

	Stage 1	Stage 2	Stage 3	
Scheduled End Time	After Underground Storage Starts Unit 1: 30 to 35 years Unit 2: 25 to 30 years	30 Years after Stage 1 Ends	300 Years after Stage 1 Ends	
Concept	Contain in an Underground Facility	Suppress Migration by Underground Facility and Surrounding Soil Mainly Suppress Migration by the Surrounding Soil		
	 Establish a disposal conservation Environmental monitoring 	reclaim the soil		
Description of Management	 Establish a peripheral monitoring a Monitor the concentration of radio Provide drainage via drainage and 	area bactive materials in groundwater monitoring equipment	•Restrict excavation, drilling, etc.	
	 Ensure that there is no leakage Maintain buried equipment 	•Monitor the status of leaking		

How Vitirified Waste is Created

Transport Casks for High-level Radioactive Waste (Vitrified Waste) Shipment Container

Transport Vessels for High-level Radioactive Waste (Vitrified Waste)

Temporary Storage for High-level Radioactive Waste (Vitrified Waste)

Record of Return and Acceptance of High-Level Radioactive Waste (Vitrified)

(As of Feb. 2018)

Returned Shipment Count	Name of Transport Ship	Transport Containers	Route	Qty of Returned Vitrified Canisters	Origin	Destination	Receipt Complete
1st	Pacific Pintail	1	Via S. America/Cape Horn	28	France, Cherbourg Harbor 2/23/1995	Mutsu-Ogawara Port 4/26/1995	October 12, 1995
2nd	Pacific Teal	2	Via Cape of Good Hope/SW Pacific	40	France, Cherbourg Harbor 1/13/1997	Mutsu-Ogawara Port 3/18/1997	July 29, 1997
Зrd	Pacific Swan	3	Via Panama Canal	60	France, Cherbourg Harbor 1/21/1998	Mutsu-Ogawara Port 3/13/1998	September 15, 1998
4th	Pacific Swan	2	Via Panama Canal	40	France, Cherbourg Harbor 2/25/1999	Mutsu-Ogawara Port 4/15/1999	July 26, 1999
5th	Pacific Swan	4	Via Panama Canal	104	France, Cherbourg Harbor 12/29/1999	Mutsu-Ogawara Port 2/23/2000	August 21, 2000
6th	Pacific Swan	8	Via S. America/Cape Horn	192	France, Cherbourg Harbor 12/19/2000	Mutsu-Ogawara Port 2/20/2001	May 17, 2002
7th	Pacific Sandpiper	6	Via Panama Canal	152	France, Cherbourg Harbor 12/5/2001	Mutsu-Ogawara Port 1/22/2002	June 11, 2003
8th	Pacific Swan	6	Via Panama Canal	144	France, Cherbourg Harbor 6/4/2003	Mutsu-Ogawara Port 7/23/2003	June 2, 2004
9th	Pacific Sandpiper	5	Via Panama Canal	132	France, Cherbourg Harbor 1/19/2004	Mutsu-Ogawara Port 3/4/2004	July 20, 2005
10th	Pacific Sandpiper	5	Via Cape of Good Hope/SW Pacific	124	France, Cherbourg Harbor 2/17/2005	Mutsu-Ogawara Port 4/20/2005	April 26, 2006
11th	Pacific Sandpiper	7	Via Panama Canal	164	France, Cherbourg Harbor 2/1/2006	Mutsu-Ogawara Port 3/23/2006	April 10, 2007
12th	Pacific Sandpiper	6	Via Panama Canal	130	France, Cherbourg Harbor 2/8/2007	Mutsu-Ogawara Port 3/27/2007	August 31, 2007
13th	Pacific Sandpiper	1	Via Panama Canal	28	UK Barrow Harbor 1/21/2010	Mutsu-Ogawara Port 3/9/2010	June 4, 2010
14th	Pacific Glebe	3	Via Panama Canal	76	UK Barrow Harbor 8/3/2011	Mutsu-Ogawara Port 9/15/2011	August 31, 2012
15th	Pacific Glebe	1	Via Panama Canal	28	UK Barrow Harbor 1/9/2013	Mutsu-Ogawara Port 2/27/2013	April 9, 2013
16th	Pacific Glebe	5	Via Cape of Good Hope/SW Pacific	132	UK Barrow Harbor 2/14/2014	Mutsu-Ogawara Port 4/22/2014	January 29, 2015
17th	Pacific Glebe	5	Via Panama Canal	124	UK Barrow Harbor 7/28/2015	Mutsu-Ogawara Port 9/16/2015	March 27, 2016
18th	Pacific Glebe	5	Via Panama Canal	132	UK Barrow Harbor 9/1/2016	Mutsu-Ogawara Port 10/20/2016	March 10, 2017

Total Received: 1,830

Examination of Methods for Disposing of High-Level Radioactive Waste

Given the difficulties of people managing wastes into perpetuity and not burdening future generations with monitoring them, methods have been examined that would allow safe disposal without the need for human management.

- Disposal in geological formations are considered highly feasible, given the numerous examples of underground resources already being maintained for a long time.
- With disposal in space, problems exist in reliability of launching technologies.
- Ocean dumping, in which waste is discarded in deep parts of the sea, is banned under the London Convention.
- Disposal in polar ice is banned under the Antarctic Treaty. Further, features of the ice sheet are not fully known.

Multi-Barrier System for Disposing of High-Level Radioactive Waste

Geological Disposal of High-level Radioactive Waste

Example of layout in case of co-location with TRU waste disposal facility

Example of specifications (crystalline basement, depth of 1,000m)

Surface Facility	Ground area: $1 \sim 2$ km ²
Underground facility for HLW	Disposal area: Approx. 3km x 2km
Underground facility for TRU waste	Disposal area: Approx. 0.5km x 0.3km

Decay of Radioactivity of High-Level Radioactive Waste

Source: Japan Nuclear Cycle Development Institute (today's Japan Atomic Energy Agency), The Technical Reliability of Geological Disposal of High-Level Radioactive Waste in Japan

Systems for Handling the Treatment and Disposal of High-Level Radioactive Waste

(Note) In terms of final disposal methods, high-level radioactive waste generated from nuclear power generation is referred to as "specific radioactive waste" and geological disposal is referred to as "final disposal".

Geological Disposal Site Selection Process

(Note) The opinions of local governments at each survey stage are listened to and fully respected (in the case of opposition, do not proceed to the next stage).

Source: METI Advisory Committee for Natural Resources and Energy, Electricity and Gas Industry Committee, and Nuclear Energy Subcommittee documentation

Disposal Plans for High-Level Radioactive Waste by Country

(as of the end of December 2024)

Country	Implementing Body	Type of Waste	Amount	Disposal Sites (Candidate) & Rock Types	Disposal Depth	Scheduled Start Operation Time
France	French National Radioactive Waste Management Agency (ANDRA)	High-level, vitrified waste	11,800㎡ (if all is reprocessed)	Meuse , 11 municipalities of Haute-Marne (Near the Bure Underground Laboratory) Rock type: clay layer	About 500m	2040s
Japan	Nuclear Waste Management Organization of Japan (NUMO)	High-level, vitrified waste	40,000 + canisters	Site to be determined Rock type: to be determined	300m+	To be determined
Belgium	National Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS)	High-level, vitrified waste & spent fuel (Category C)	11,700m [®] (if reprocessed)	Site to be determined Rock type: to be determined	To be determined	2080
Switzerland	National Cooperative for the Disposal of Radioactive Waste (NAGRA)	High-level, vitrified waste & spent fuel	1,490m [°]	Noerdlich Laegern Rock type: Opalinus clay	About 800m	Around 2060
U.S.A.	Department of Energy (DOE)	Spent fuel (mainly for commercial use) High-level, vitrified waste (mainly for national defense)	70,000 tons (Uranium heavy metal basis)	Nevada Yucca Mountains (Nuclear Waste Policy Act) Rock type: tuff	200 to 500m	2048
Germany	Bundesgesellschaft für Endlagerung (BGE)	High-level, vitrified waste & spent fuel	27,000m ³ (Volume value includes waste container)	Site to be determined Rock type: to be determined	300m+	To be determined
Finland	Posiva Oy	Spent fuel	6,500 tons (uranium basis)	Olkiluoto, Eurajoki Rock type: crystalline rock	About 400m to 450m	2020s
Sweden	Swedish Nuclear Fuel and Wastes Management Co. (SKB)	Spent fuel	12,000 tons (uranium basis)	Forsmark, Östhammar Rock type: Crystalline rock	About 500m	2030s

Source: Agency for Natural Resources and Energy, The Disposal of High-level Radioactive Waste in Other Countries, (Feb. 2025)