The Structure of Atoms

	No. of Protons	No. of Neutrons	Sum of Protons & Neutrons	Percent Naturally Occurring
Uranium 234	92	142	234	0.0055%
Uranium 235	92	143	235	0.7200%
Uranium 238	92	146	238	99.2745%

Fission of Uranium, Production and Fission of Plutonium

• Fission in a fast breeder reactor and production of plutonium (propagation)

Nuclear Fission inside Light Water Reactors

Utilization of Uranium Resources

%170TWh is equivalent to the annual output of ten 1GW capacity nuclear reactors. (1)

*2 Usage of plutonium can improve the usage efficiency of uranium by about 30 times when the fast breeder reactor comes into practical use. (2)

Nuclear Fuel Cycle

7-2-1 © JAERO

Nuclear Fuel Cycle (Including FBR)

Locations of Nuclear Fuel Cycle Facilities

(As of Apr. 2025)

Locations of Nuclear Reactor Facilities for Testing and Research or at the R&D Stage

(As of Nov. 10, 2021)

Outline of JNFL's Nuclear Fuel Cycle Facilities

(As of Oct. 2024)

	Reprocessing Plant	Vitrified Waste Storage Center	MOX Fuel Fabrication Plant	Uranium Enrichment Plant	Low-level Radioactive Waste Disposal Center	
Location	Aza-Ol H	kizuke, Oaza-Obuchi, Rokkash Kamikita-gun, Aomori Prefectu	io-mura, ire	Aza-Nozuki, Oaza-Obuchi, Rokkasho-mura, Kamikita-gun, Aomori Prefecture		
	Area of site: app	rox. 3.9 million m²		Area of	site: approx. 3.4 million m ²	
Capacity	Maximum yearly reprocessing capacity: 800 t-U*1/year Maximum daily reprocessing capacity: 4.8 tU*1 Storage capacity for spent fuel: 3,000 t-U*1	Storage capacity for waste returned from oversea plants: 2,880 canistiers of vitrified waste	Maximum capacity: 130 t-HM*²/y MOX fuel assemblies for domestic light water reactors (BWR and PWR)	450 t-SWU∗³/year	[Existing Facilities] Number one disposal facility: approx. 40,960 m ³ (Equivalent to 204,800 200-liter drums) Number two disposal facility: approx. 41,472 m ³ (Equivalent to 207,360 200-liter drums) [Planned New Facilities] Number three disposal facility: approx. 42,240 m ³ (Equivalent to 211,200 200-liter drums) Planned to be expanded to 600,000 m ³	
Current Status	Under construction	Cumulative number of stored canisters: 1,830	Under construction	Operation stopped	Number one disposal facility: 151,803 drums Number two disposal facility: 198,824 drums	
Schedule	Start of construction: 1993 Completion: 2026	Start of construction: 1992 Business operation: 1995	Start of construction: 2010 Completion: 2027	Start of construction: 1988 Business operation: 1992	Start of construction: 1990 Start of disposal: 1992	

*1 U: The mass of uranium in the metal state.

*2 HM: The mass of the metal component of plutonium and uranium in MOX fuel.

*3 SWU: Separating work units when the natural uranium is separated from enriched uranium.

Locations of Nuclear Fuel Cycle Facilities

Nuclear Fuel Cycle Costs

(Note) Totals may not add up due to rounding.

Major Uranium Conversion Plants Worldwide

(As of Jan. 2025)

Country	Company Name	Location	Capacity (tU*/year)	Commercial Operation
Argentina	Comisión Nacional de Energía Atómica (CNEA)	Pilcaniyeu		
Canada	Cameco Corp.	Port Hope	12,500	1970
Chine	China Nuclear Energy Indaustry Corp.	Lanzhou, Gansu	3,000tHM	1980
China	hengyang Uranium Plant	Ziyang City, Hunan Province	3,000	2016
France	Orano CE Tricastin	Pierrelatte	14,000	2018
Russia	TVEL, Fuel Company of Rosatom	Seversk		1953
U.K.	Springfields Fuels Ltd.	Lancashire	6,000	1993.3
U.S.A.	ConverDyn	Metropolis	7,000	1964

* U: The weight of uranium in its metal state HM : The mass of metal component of plutonium and uranium in MOX fuel

How Centrifuges Work

Major Uranium Enrichment Plants Worldwide

(As of Jan. 2025)

Country	Company Name	Location	Enrichment Method	Capacity (tU*/year)	Commercial Operation
Brazil	Indústrias Nucleares do Brasil (INB)(CNEA)	Resende	Centrifugation	70	2009.4
China	China Nuclear Energy Indepetry Corn (CNEIC)	Lanzhou, Gansu	Centrifugation	500	2005
China	China Nuclear Energy Indaustry Corp.(CNEIC)	Hanzhong, Shaanxi	Centrifugation	1,000	1997
France	Orano CE Tricastin	Pierrelatte	Centrifugation	7,500	2011.4
Germany	URENCO Deutschland GmbH	Gronau	Centrifugation	3,600	1985
Japan	Japan Nuclear Fuel Ltd. (JNFL)	Rokkasho, Aomori	Centrifugation	1,050	1992.3
Netherlands	URENCO Nederland B.V.	Almelo	Centrifugation	5,100	1972
		Seversk	Centrifugation	_	1953
Duccio		Angarsk	Centrifugation	_	1954
Russia	IVEL, Fuel Company of Rosatom	Novouralsk	Centrifugation		1964
		Zelenogorsk	Centrifugation		1962
U.K.	URENCO UK Ltd.	Capenhurst	Centrifugation	4,400	1972
ШСА	Louisiana Energy Services LLC	New Mexico	Centrifugation	4,500	2010.6
0.5.A.	Centrus Energy Corp.	Piketon	Centrifugation	_	2023

*SWU: Unit that represents the amount of work involved in separating naturally occurring uranium into enriched uranium.

Major Uranium Reconversion Plants Worldwide

(As of Jan. 2025)

Country	Company Name	Location	Capacity (tU*/year)	Commercial Operation
Argentina	Dioxitek S.A.	Córdoba		
Brazil	Indústrias Nucleares do Brasil	Resende	120	2000
Canada	Cameco Corp.	Port Hope	2,800	1970
France	FRAMATOME SAS	Romans sur Isère	1,800	1974
Germany	Advanced Nuclear Fuel GmbH	Lingen	800	1974
India	Nuclear Fuel Complex(NFC)	Hyderabad	450tHm	1972
Japan	Mitsubishi Nuclear Fuel Co., Ltd. (MNF)	Tokai, Ibaraki	450	1972.1
Kazakhstan	Ulba Metallurgical Plant (UMP)	Ust-kamenogorsk		
South Korea	KEPCO Nuclear Fuel Co.,Ltd. (KEPCO NF)	Daejeon	700	1990.3
Romania	Societatea Nationala Nuclearelectrica S.A.(SNN)	Brasov	300	1978
U.K.	Springfields Fuels Ltd.	Lancashire	900	1993.3
U.S.A.	FRAMATOME Inc.	Richland	1,200	1972

*U: Weight of uranium in its metal state

Process of Fabricating Uranium Fuel

Major Uranium Fuel (for Lightwater Reactors) Fabrication Plants Worldwide

(As of Jan. 2025)

Country	Company Name	Location	Fuel Type	Capacity (tU)	Commercial Operation
Argentina	CONUAR S.A	Ezeiza	PHWR,RWR	240	1982.4
Brazil	Indústrias Nucleares do Brasil (INB)	Resende	PWR	240	1982.10
	CNNC Jianzhong Nuclear Fuel Co.,Ltd.	Yibin City, Sichuan Province	PWR,VVER	800	1998
China	CNNC North Nuclear Fuel Co. Ltd	Baotou,	PWR	600	2012
France	CNNC North Nuclear Fuel Co.,Ltd.	Inner Mongolia Autonomous Region	PHWR	200tHM	2003
France	FRAMATOME SAS	Romans-sur-Isère	PWR	1400tHM	1974
Germany	ANF - Advanced Nuclear Fuel GmbH	Lingen	PWR,BWR	650	1974
			BWR	24tHM	1974
India	Nuclear Fuel Complex(NFC)	Hyderabad	PHWR	300tHM	1997
			PHWR	1500tHM	1974
	Global Nuclear Fuel-Japan Co., Ltd. (GNF-J)	Yokosuka, Kanagawa	BWR	750	1970.9
lanan	Mitsubishi Nuclear Fuel Co., Ltd. (MNF)	Tōkai, Ibaraki	PWR	440	1972.1
Japan	Nuclear Fuel Industries Ltd. (NEI)	Kumatori, Osakai	PWR	284	1975.8
	Nuclear Fuer Industries Ltd. (NFI)	Tōkai, Ibarak	BWR	250	1980.1
Kazakhstan	Ulba Metallurgical Plant (UMP) JSC	Ust-kamenogorgk	AFA 3G design pellets	300t	—
South Koroo		Decisor	PWR	550	1989.1
South Korea	Korea Nuclear Fuer Co., Ltu. (KEFCO NF)	Daejeon	PHWR	400	1998.1
		Elektroatel	VVER,BWR,PWR	1100	1965
Russia	TVEL, Fuel Company of Rosatom	Elektrostai	RBMK	460	1965
		Novosibirsk	VVER	1200	1979
Spain	ENUSA Industrias Avanzadas, S.A.S.M.E	Juzbado	PWR,VVER,BWR	500	1985
Sweden	Westinghouse Electric Sweden AB	Västerås	BWR,PWR,VVER	600	1969
U.K.	Springfields Fuels Ltd.	Lancashire	PWR	200	1993
	FRAMATOME Inc.	Richland	PWR,BWR	1200tHM	1972
U.S.A.	Westinghouse Electric Co. LLC	Hopkins	PWR,BWR	1350	1969
	Global Nuclear Foel	Wilmington	BWR		_

*U: Weight of uranium in its metal state

Flow of Reprocessing

Uranium

Plutonium

Fission products (High-level radioactive waste) Metal Chips, etc.

Major Reprocessing Plants Worldwide

(As of Jan. 2025)

Country	Company Name	Location	Plant	Capacity (tU* ¹ /year)	Commercial Operation
China	Lanzhou Nuclear Fuel Complex	Lanzhou, Gansu	Lanzhou Pilot Reprocessing Plant	_	2010
France	Orano R La Hague	La Hague	La Hague Plant	1,700tHM	1958 ~ *²
India	India Gandhi Centre for Atomic Research (IGCAR)	Kalaakkam	Demonstration Fast Reactor Fuel Reprocessing Plant (DFRP)		2024
	Bhabha Atomic Research Centre (BARC)	Каграккат	Fast Reactor Fual Cycle Facility (FRFCF)		
Japan	Japan Nuclear Fuel Ltd. (JNFL)	Rokkasho, Aomori	Rokkasho Nuclear Fuel Cycle Facility (Reprocessing Plants)	800	2026 (Completion)
	PA Mayak	Ozersk	Joint Mayak Reprocessing Plant RT-1 Plant	400tHM	1977.4
Duccio			Pilot Demonstration Center	4.4tHM (Phase I)	2016 (Phase I)
nussia	Mining and Chemical Complex (MCC)	Zheleznogorsk	(PDC)	220tHM (Phase II)	Schduled for 2025 (Phase II)
			RT-2 Plant	800tHM	Schduled for 2035

*1 U: The weight of uranium in its metal state HM : The mass of metal component of plutonium and uranium in MOX fuel

*2 UP1:1958, UP2:1966, UP2-400:1966, UP2-800:1994, UP3:1990

MOX Fuel Use in a Thermal Reactor

MOX Fuel

*MOX (Mixed Oxide) fuel: a combined fuel made of plutonium and uranium, which is used in plutonium-thermal lightwater reactors and fast breeder reactors.

Effect of Plutonium on Fuel Properties

[Melting point]

Drops as plutonium mixing ratio increases.

[Heat conductivity]

Drops as plutonium mixing ratio increases.

• At the ratio of plutonium in MOX fuel used for thermal reactors, the melting point drops just a few tens of degrees.

- The drop in heat conduction is also slight.
- There is plenty of margin between the melting point and actual pellet temperatures.

[Gas release rate]

The proportion of gas from nuclear fission that builds up in the cladding tubes increases somewhat. Increases the volume of space (gas reservoir) between fuel rods and inhibits an increase in internal pressure.

Effect of Plutonium on Fuel Nuclear Characteristics

[Fuel Rod Heat Distribution]

Because plutonium reacts readily with neutrons, the output of MOX fuel rods is high.

[Control Rod Efficacy]

Because plutonium readily absorbs neutrons, the number of neutrons absorbed by the control rods is reduced.

If fuel rods and assemblies are deployed properly, a sufficient margin to limits can be achieved, just as with a uranium reactor core.

[Response to Disturbance]

If an anomaly occurs, causing an increase in pressure in the reactor, the output tends to be greater than traditional models.

Major MOX Fuel Fabrication Facilities Worldwide

(As of Jan. 2025)

Country	Company Name	Location	Fuel Type	Capacity (tHM * /year)	Commercial Operation
France	Orano R Melox	Chusclan	PWR,BWR	195	1995
India	Bhabha Atomic Research Centre (BARC)	Kalpakkam —			
	Japan Atomic Energy Agency (JAEA)	Tōkai, Ibaraki	FBR	4.5	1988
υαματι	Japan Nuclear Fuel Ltd. (JNFL)	Rokkasho, Aomori	PWR,BWR	130 (max.)	2027 (completion)

*HM: The mass of the metal component of plutonium and uranium in MOX fuel.

MOX Use in the World

As of Jan. 1, 2025

Country	Plant Name	Reactor Type	Gross Output (MW)	Start of Loading	Cumulative Number of MOX Fuel Assemblies As of the End of 2022	Co
Belgium	Tihange-2	PWR	1,055	1994 *1]	Ind
	Doel-3	PWR	1,056	1994 *1	} 96	
France	Phénix	FBR	140	1973		
	St.Laurent-Des-Eaux-B1	PWR	956	1987		
	St.Laurent-Des-Eaux-B2	PWR	956	1988		Net
	Gravelines-3	PWR	951	1989		Ru
	Gravelines-4	PWR	951	1989		
	Dampierre-1	PWR	937	1990		Sw
	Dampierre-2	PWR	937	1993		
	Le Blayais-2	PWR	951	1994		
	Tricastin-2	PWR	955	1996		Sw
	Tricastin-3	PWR	955	1996		
	Tricastin-1	PWR	955	1997		
	Tricastin-4	PWR	955	1997		U.S
	Gravelines-1	PWR	951	1997		
	Le Blayais-1	PWR	951	1997		Jap
	Dampierre-3	PWR	937	1998		
	Gravelines-2	PWR	951	1998		
	Dampierre-4	PWR	937	1998		
	Chinon-B4	PWR	954	1998		
	Chinon-B2	PWR	954	1999		
	Chinon-B3	PWR	954	1999		
	Chinon-B1	PWR	954	2000		
	Gravelines-6	PWR	951	2008		
Germany	Obrigheim*2	PWR	357	1972	78	
	Necker-1*3	PWR	840	1982	32	
	Unterweser*3	PWR	1,410	1984 to 2009	200	
	Grafenrheinfeld*4	PWR	1,345	1985 to 2012	164	
	Philippsburg-2*5	PWR	1,468	1989	228	
	Grohnde ^{*6}	PWR	1,430	1988 to 2018	140	*1:En
	Brokdorf ^{*6}	PWR	1,480	1989 to 2019	272	*2:M
	Gundremmingen-C*6	BWR	1,344	1995	376	*3.At
	Gundremmingen-B*4	BWR	1,344	1996	532	*5:De
	Isar-2*7	PWR	1,485	1998 to 2019	212	*6:De
	Necker-2*7	PWR	1,400	1998	96	*7:Ap
	Emsland*7	PWR	1,406	2004	144	*8:20

Country	Plant Name	Reactor Type	Gross Output (MW)	Start of Loading	Cumulative Number of MOX Fuel Assemblies As of the End of 2022
India	Kakrapar-1	PHWR	220	2003	
	Tarapur TAPS-1	BWR	160	1994	
	Tarapur TAPS-2	BWR	160	1995	
	PFBR	FBR	500	2024	
Netherlands	Borssele	PWR	512	2014	48
Russia	Beloyarsk-3	FBR	600	2003	
	Beloyarsk-4	FBR	885	2020	
Swizerland	Beznau-1	PWR	380	1978 to 2012	124 \
	Beznau-2	PWR	380	1978 to 2012	108 ²³²
	Gosgen	PWR	1,060	1997 to 2012	48
Sweden	Oskarshamn-1	BWR	492	Licensed	
	Oskarshamn-2	BWR	661	Licensed	
	Oskarshamn-3	BWR	1,450	Licensed	
U.S.A.	Catawba-1	PWR	1,188	2005*8	4
	Robert E. Ginna	PWR	608	1980* ⁹ to 1985	4
Japan	Fugen*10	ATR	165	1981	772
	Monju ^{*11}	FBR	280	1993	
	Genkai-3	PWR	1,180	2009	36
	lkata-3	PWR	890	2010	21
	Takahama-3	PWR	870	2010	44
	Takahama-4	PWR	870	2016	36
	Fukushima I-3*12	BWR	784	2010	32
	Kashiwazaki Kariwa-3	BWR	1,100	Licensed*14	
	Hamaoka-4	BWR	1,137	Licensed*14	
	Shimane-2	BWR	820	Licensed*14	
	Onagawa-3	BWR	825	Licensed*14	
	Tomari-3	PWR	912	Licensed*14	
	Ohma ^{*13}	ABWR	1,383	Licensed*14	
1 : End of MOX use in 2003		* 9 : 1980, 4 fuel assemblies loaded.			

- 1ay 11, 2005, closed
- 3 : August 07, 2011, closed
- * 4 : December 31, 2017, closed
- * 5 : December 31, 2019, closed
- * 6 : December 31, 2021, closed
- * 7 : April 15, 2023, scheduled to closed
- * 8 : 2005, 4 fuel assemblies loaded. Loaded for about 4 years.
- * 10 : March 29, 2003, closed
- * 11 : December 21, 2016, decision to decommissioned
- * 12 : April 19, 2012, decommissioned
- *13 : under construction
- $\ensuremath{\ast}$ 14 : Licensed under the old regulatory standards
- (Note) Only the findings from the questionnaire are posted.

How a Fast Breeder Reactor (FBR Works)

A Comparison of Nuclear Reactors

	Neutron that contributes to fission	Fuel	Moderator	Coolant	Conversion Ratio*
Fast breeder reactor (FBR)	Fast neutron	Fissile plutonium about 16 to 21% Depleted uranium about 79-84% (Blanket fuel is depleted uranium only.)		Sodium	Approx. 1.2
Lightwater reactor (BWR, PWR)	Thermal neutron	Uranium-235: 3-5% Uranium-238: 95-97%	Light water	Light water	Approx. 0.6

*Conversion Ratio: Percentage of fuel generated relative to fuel consumed as 1.0.

Amount of Spent Fuel Stored at Nuclear Power Plants

Dever Commonly	Dever Dient	1 Reactor Core	1 Replacement	As of the end of Dec. 2024		
Power Company	Power Plant	(tU)	Worth (tU)	Spent Fuel in Storage (tU)	Legally Required Capacity(tU)	
Hokkaido Electric Power	Tomari	170	50	400	1,070	
Teheku Electric Dewer	Onagawa	200	40	490	860	
Ionoku Electric Power	Higashidōri	130	30	100	440	
	Fukushima Daiichi	580	140	2,130	2,260	
Tokyo Electric Power	Fukushima Daini	0	0	1,650	1,880	
(TEPCO)	Kashiwazaki-Kariwa	960	230	2,360	2,910	
Chubu Electric Power	Hamaoka	410	100	1,130	1,300	
Hokuriku Electric Power	Shika	210	50	150	740	
	Mihama	70	20	500	620	
Kansai Electric Power	Takahama	290	100	1,480	1,730	
	Ohi	180	60	1,870	2,100	
Chugoku Electric Power	Shimane	100	20	480	700	
Shikoku Electric Power	Ikata	70	20	770	960	
Kunsha Electric Demor	Genkai	180	60	1,210	1,540	
Kyusnu Electric Power	Sendai	150	50	1,140	1,340	
The Janes Merrie Dewer Commence	Tsuruga	90	30	630	910	
The Japan Atomic Power Company	Tokai Daini	130	30	370	440	
Tot	al	3,920	1,030	16,880	21,790	

(Note 1) According to legal requirements, the capacity required is equal to the storage capacity minus the capacity for 1 reactor core. For plants that have ceased operation, it is assumed to be the same as the storage capacity. (Note 2) Because Reactor 1 and Reactor 2 of the Hamaoka plant and Reactor 1 of the lkata plant are being decommissioned, and the removal of fuel is completed, they are excluded from the legally required capacity.

(Note 3) Because Fukushima Daiichi is being decommissioned, extension of the dry cask temporary storage facility is excluded due to the subsequent decommissioning work with reference to the value of the first promotion council (as of the end of September 2015) as a reference value.

(Note 4) Due to rounding, the total value may not equal the sum of the individual items.

Methods of Midterm Storage of Spent Fuel (Example)

Wet Pool Storage System

Dry Metal Cask Storage System

Spent Fuel Interim Storage Facility

Image for the Recyclable Fuel Storage Center which is under construction in Mutsu City, Aomori Prefecture (storage capacity: 3,000tU)

Cask for Transport & Storage

Spent Fuel Storage

As of Jan. 1, 2025

Country	Plant Name	Company	Region Located	Storage Process	Capacity	Stored Amount (Assemblies)	Start of Operation
					Current / Final Capacity	Current / Final Capacity	
France	La Harue Plant	Orano R La Harue	La Hague	Wet	— / 13990tHM	— / —	
Germany	Brennelmente-Zwischenlager Corleben(BZG) (Central storage facility)	BGZ Gesellschaft für	Gorleben	Dry	37 / 3,800tHM	113 *1/ 420 casks	1995
	Brennelmente-Zwischenlager Ahaus(BZA) (Central storage facility)	Zwischenlagerung mbH	Ahau	Dry	63 / 3,960tHM	329 / 420 casks	1992
Japan	Recyclable Fuel Storage Center	Recyclable-Fuel Strage Company	Mutsu-shi,Aomori-ken	Dry	12tU / 3,000tU ^{* 2} (Building One)	69 / 288 casks (1cask) (Building One)	Nov. 6, 2024
Russia	VVER-1000 SNF wet storage facility		Zheleznogorsk	Wet	— / 7,600tHM	—/—	1985
	RBMK-1000 SNF dry storage facility	Mining and Chemical Combine (MCC)		Dry	— / 17,700tHM	-/-	2012
	VVER-1000 SNF dry storage facility	(Dry	— / 8,900tHM	—/—	2016
Sweden	Central interium storage facility for spent nuclear fuel	Swedish Nuclear Fuel and Waste Management Co. (SKB)	Figeholm	Wet	7,642tHM / 11,000tHM	338,775 / * ³	1985.7.11
Swizerland	Zwilag (Wüerenlingen interim storage)	Zwilag Zwischenlager Würenlingen AG	Wilrenlingen	Dry	— / 2,500tHM	-/-	2001
Ukraine	Centralized apent fuel storage facility (CSFSF)	National Nuclear Energy Generating Company "Energoatom" (JSC NNEGC Energoatom)	Exclusion Zone Chornobyl NPP	Dry	-/-	— / 16,529 SFAs (VVER-1000 : 12,010 SFAs, VVER-440 : 4,519 SFAs)	2021*4
U.S.A.	Consolidated Interim Storage facility (CISF)	Interim Storage Partners, LLC.	Andrews Country, Texas	Dry	— / 40,000t	_/_	* 5
	Consolidated Interim Storage facility (CISF)	Holtec International	Lea Country, New Mexico	Dry	— ∕ 10,000t	_/_	* 6

* 1: Amount also contains coquilles from reprocessed spent fuel.

* 2: Final storage capacity 5,000 tU * 4: Start of operation of the first start-up complex of the storage facility in Aug. 2021. The first batch of SF was deployed in 2022. * 3: Depends on the type of assemblies, PWR or BWR.

* 5: License for construction and operation issued by NRC in Sep. 2021.

* 6: License for construction and operation issued by NRC in May 2023.

Safety Regulation Flow of Nuclear Fuel Transport

Safety of Transport Containers

(Note) Transport containers are categorized as type IP, L, A or B, according to the level of radioactivity and the concentration of the nuclear fuel they house. The test conditions in this diagram are based on the technical standards for type B (fissile) transport material.

*1: Fissile Material Transport

*2: If the radioactivity of materials housed exceeds 10^5A_2

7-8-2 © JAERO

Types of Packages for Transport of Radioactive Materials

*Refers to the regulated values applied to limits of packaged materials for transport.

Detailed Examples of Packages for Transport of Radioactive Materials

Туре	Overview	Representative Example	Detailed Example			
Type L package	Packages whose safe transport is ensured because the allowed radioac- tive content is restricted to such low levels that the potential hazards are insignificant.	Radio-pharmaceuticals	Packing standards Can be handled easily and safely Cracking/damage will not occur during transpo Easily decontaminated w/o unnecessary projection	Packing standards•Can be handled easily and safely•Cracking/damage will not occur during transport•Easily decontaminated w/o unnecessary projections		
Type A package	Packages whose safe transport is ensured because the radioactive mate- rials contained is limited to a fixed level (mid-level) and it is strong enough to withstand normally expected accident conditions in transport.	New fuel assembly	 Packing standards (In addition to packing standards of type L) 10cm or more on each side No possibility of cracking or damage in transit temperatures of 40 to 70°C No leakage at atmospheric pressures of 60k or lower 	it at kPa		
Type B package	As they contain highly radioactive mate- rials, these packages must ensure safety by being extremely strong and able to withstand expected conditions from a serious accident during trans- port.					
Type IP package	Packages whose safe transport is ensured because materials are limited to materials with relatively low risk, such as materials with low specific activity.	Low-level radioactive waste				

Transport Casks for Spent Fuel (Cask)

(Note) Figure shown is NFT-38B(Dry Cask) used for domestic transport.

Transport Vessels for Spent Fuel

(1) Securing safe navigation

- Multiple navigational radar systems
- Automatic collision-avoidance assistance equipment, etc.

(2) Safe structure

- Double hulled structures
- Enhanced buoyancy

(3) Fire prevention

- · Compartmentalized leak-containment structure
- · Hold flooding system, etc.

